Статья на конкурс «био/мол/текст»: Каждый год, с завидной регулярностью, человечество сталкивается с большой и малоизученной опасностью. Непонятно откуда и по каким причинам вдруг появляются новые, неизвестные ранее виды вирусов, которые угрожают всем нам эпидемиями и гибелью большого количества людей. Так, появившийся весной 2015 года в Южной Корее ближневосточный респираторный коронавирусный синдром (коронавирус MERS) застал врасплох южнокорейские власти и заставил их принимать срочные эпидемиологические меры. Смертность от MERS составила более 35%, и, как сказано в бюллетене ВОЗ, «в настоящее время не существует ни конкретного лечения, ни вакцины от этой болезни». Поэтому интерес исследователей к вирусам вполне объясним и имеет жизненно важное значение.
Эволюция и происхождение вирусов
Как теперь известно ученым, вирусы окружают нас повсюду в живой природе. И каждая клетка каждого живого организма несет в себе следы прошлых встреч с ними. Генетическое разнообразие вирусов, их умение меняться и приспосабливаться, а также их огромное количество в природе — поражают. Предполагается, что общее число вирусных частиц на порядок выше количества всех клеток всех организмов на Земле . Миллионы лет назад ретроэлементы и ретровирусы участвовали в эволюции, выступая в качестве генетического резервуара для создания новых генов и усложнения видов. Этот вопрос подробно исследовали и нашли массу подтверждающих фактов российские генетики из Института биоорганической химии РАН (академик Е.Д. Свердлов, А.А. Буздин и их коллеги) [2, 3]. И сейчас вирусы могут выступать одним из «орудий» эволюции, регулируя численность и жизнеспособность популяций*.
Когда именно на Земле появились первые вирусы, наука точно сказать не может. Сегодня существует несколько гипотез происхождения вирусов. Один из самых авторитетных ученых-вирусологов, академик РАМН В.М. Жданов, особо выделяет три из них. Согласно первой, вирусы могут быть потомками бактерий или других одноклеточных организмов, претерпевших дегенеративную эволюцию. То есть бактерии или одноклеточные по каким-то причинам вместо обычного развития в сторону усложнения, потеряли часть структур и «упростились» до вирусов. Согласно второй гипотезе, вирусы появились еще до образования первых живых клеток и являются потомками древних доклеточных форм жизни. Возможно, поначалу они обладали автономностью, но затем перешли к паразитическому способу жизни, используя для своего размножения другие формы. Согласно третьей гипотезе, вирусы произошли от клеточных генетических структур — ретротранспозонов, — способных передвигаться в геномах .
В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии . Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.
Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек . И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.
Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков ?
Новосибирские микробиологи Игорь Бабкин и Ирина Бабкина из Института химической биологии и фундаментальной медицины РАН (ИХБФМ СО РАН), исходя из результатов геномного анализа называют более близкую к нам дату возникновения вируса натуральной оспы — 3000–4000 лет назад . Место возникновения — восточная Африка. Но, так или иначе, вырвавшись с африканского континента около двух тысяч лет назад, вирус оспы начал свое «черное» шествие по миру, уложив в могилу огромное количество людей на всех континентах, и просуществовал до 1980 года, когда человечество объединенными усилиями его победило. Сегодня вирус натуральной оспы под строгим контролем сохраняется в двух лабораториях: в Центре по контролю заболеваний (CDC, Атланта, США) и в Научном центре вирусологии и биотехнологии «Вектор» (Кольцово, Россия) *.
Строение вирусов и иммунный ответ организма
В поле зрения ученых вирусы попали в начале XVIII века. Тогда европейские врачи заинтересовались феноменом непроизвольной вакцинации: люди, зараженные легкой формой оспы — коровьей, — были не подвержены оспе натуральной, то есть человеческой. Прорыв в этом вопросе произошел в 1796 году, когда английский врач и ученый Эдвард Дженнер (рис. 1, справа) публично произвел первое «цивилизованное» и безопасное оспопрививание . После этого прошло без малого двести лет, когда в 1892 году впервые был описан вирус. Звание первооткрывателя вирусов по праву принадлежит российскому микробиологу Дмитрию Иосифовичу Ивановскому (рис. 1, слева), который в конце XIX века сумел описать вирус, вызывающий мозаичную болезнь растения табака. И вслед за этим открытием началось лавинообразное изучение вирусов, которые не перестают нас удивлять и преподносить неожиданные сюрпризы.
Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).
После детального изучения вирусов, которые получили свое название от латинского слова virus (яд), стало известно, как именно они устроены. Полноценная вирусная частица — вирион — состоит из белковой оболочки (капсида) и внутреннего содержимого: нуклеиновой кислоты, «хранящей» вирусные гены (рис. 2, 3). У некоторых вирусов капсид покрыт дополнительными слоями из белков и липидов. По тому, какая именно нуклеиновая кислота содержится в вирусе, их делят на два больших вида: ДНК- и РНК-вирусы*.
Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].
Рисунок 3. Генетическая организация вируса ВИЧ-1. (+)РНК-геном вируса содержит гены, ответственные за синтез белков, выполняющих структурные, ферментативные и регуляторные функции. Это гены gag, env и pol, имеющиеся у всех известных ретровирусов и кодирующие структурные белки оболочки вируса (gag, env), а также ферменты: ревертазу, интегразу и протеазу (ген pol). Оставшиеся шесть генов — vpr, vpu, vif, tat, rev, nef — так или иначе участвуют в жизненном цикле ВИЧ-1, кодируя регуляторные белки и подавляя активность иммунных клеток. Два вида вируса иммунодефицита человека (ВИЧ-1 и ВИЧ-2) различны по составу генов: у ВИЧ-2 нет гена vpu, зато есть ген vpx. Рисунок с сайта www.zdrav.kz.
Что происходит после того, как вирус попадает внутрь организма? Уже в слизистой оболочке иммунные клетки (макрофаги) поглощают часть вирионов. Вслед за этим, когда вирус проникает в кровь, другие иммунные клетки — Т-хелперы — дают стимулирующий сигнал «убийцам» вирусов: B-лимфоцитам и Т-киллерам. Операция по уничтожению вируса переходит в следующую фазу. Активированные B-лимфоциты образуют антитела, которые находят свободные антигены вирусов и связываются с ними. Такой тандем (вирусный антиген — антитело) захватывается и уничтожается макрофагами. Те вирусы, которые сумели ускользнуть от антител и макрофагов и внедриться в клетки, уничтожаются вместе с пораженными клетками Т-киллерами. И завершающий этап иммунной реакции: клетки Т-супрессоры гасят активность иммунного ответа, прекращая агрессивные действия Т-киллеров и B-лимфоцитов, чтобы те, разбушевавшись, не уничтожили и здоровые клетки.
Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).
В 2008 году американские исследователи из Университета Рокфеллера открыли еще один интерферон-зависимый антивирусный механизм. Выяснилось, что интерферон стимулирует синтез белка BST-2 (тетерина), блокирующего выход вирионов из клетки . Но некоторые вирусы научились обходить действие интерферона. Так, вирус Эбола (рис. 4) с помощью своего белка eVP24 не дает ядерному фактору PY-STAT1 проникнуть в ядро и запустить действие интерферона . У этого вируса есть еще несколько механизмов, делающих его неуязвимым для иммунитета. Так, внутреннее содержимое вируса окружено «чехлом» из полисахаридов, благодаря чему вирус плохо распознается иммунной системой*.
* — О борьбе с вирусом Эбола с помощью моноклональных антител рассказывает статья «Вирус Эбола и макак-резус: получено новое эффективное лекарство» .
Причины поражений в борьбе с ВИЧ
Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии . Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.
Почему же человечество со всем своим огромным научным и техническим потенциалом ничего не может противопоставить этой смертоносной инфекции? Проблема борьбы с ВИЧ многоуровневая и включает в себя несколько факторов. Так, неизвестно почему, но иммунная система человека вместо того, чтобы бороться с вирусом, иногда помогает ему. Этот феномен, получивший название антителозависимое усиление инфекции (ADE), был описан применительно к ВИЧ в конце 80-х годов американскими биологами из университетов Калифорнии и Вандербильта — В. Робинсоном и его коллегами . Было обнаружено, что антитела, которые вырабатываются в организме в ответ на вирусную атаку, облегчают проникновение вируса в клетку (рис. 5, 6). Посредством специфического участка — Fc-области — они присоединяются к клеткам-фагоцитам и «проводят» вирус в них. Это похоже на то, как поводырь проводит плохо видящего человека в нужное место: антитело «берет за руку» вирус и заводит его в макрофаг.
Рисунок 5. Схема развития феномена ADE при вирусных инфекциях.
Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга . Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.
Рисунок 6. Электронно-микроскопическая фотография макрофага, инфицированного ВИЧ-1. Две темные области — многочисленные вирусные частицы, которыми «нашпигована» клетка. Рисунок из .
Но и это еще не все уловки в арсенале смертоносной инфекции. В нашем организме существуют специальные антиретровирусные системы, которые должны противостоять ВИЧ. Сегодня известны три таких системы: упоминавшийся выше (в связи с интерфероном) BST-2/ тетерин, а также AID/APOBEC и TRIM5-α . Но, как выяснилось, все они оказываются бессильны в борьбе против ВИЧ. Вот как об этом говорит М.Р. Бобкова из Института вирусологии им. Д.И. Ивановского: «Антивирусные системы клетки, получившие название „внутреннего иммунитета“ (intrinsic immunity), пытаются бороться с вирусом, но у них это плохо получается. APOBEC модифицирует вирусную ДНК таким образом, что это приводит к ее разрушению либо неполноценности. В ответ на это вирус ВИЧ приобрел белок Vif, блокирующий функцию APOBEC. TRIM5-α у обезьян хорошо справляется с функцией преждевременного „раздевания“ РНК вируса, но только не „своего“ вида, а всех других. У человека этот белок есть, но функция его снижена, и ее недостаточно для ограничения репликации (копирования) ВИЧ. Тетерин связывает отпочковывающиеся вирусные частицы и не дает им покинуть поверхность клетки. В противодействие этому у ВИЧ есть белок Vpu, который путем связывания тетерина „освобождает“ новые частицы. Представить себе, что эти механизмы защиты от внутреннего иммунитета вирус выработал за те несколько десятилетий, что он общается с человеком, невозможно, поэтому должно быть какое-то другое объяснение».
«Другое» объяснение приводит в своей работе известный специалист по ВИЧ, микробиолог Михаил Супотницкий. По его мнению, причина того, что антивирусные системы человека бессильны против ВИЧ, носит эволюционный характер: «Почему так работают антиретровирусные системы человека? Причина, скорее всего та же, что заставляет иммунную систему человека участвовать в размножении и распространении ВИЧ — эти системы созданы самими ретровирусами» . Когда-то, несколько сотен миллионов лет назад, древние ретроэлементы, от которых произошли все ретровирусы, участвовали в процессе эволюции в формировании иммунной системы позвоночных, передав для ее генов некоторые свои элементы. И потому наша иммунная система, созданная ретроэлементами, иногда может по старой памяти воспринимать вирусы как «своих».
Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.
Также известно, что ВИЧ в своем жизненном цикле задействует множество белков организма хозяина (рис. 7). В 2008 году ученые из Гарвардской медицинской школы и Института Говарда Хьюза посредством механизма РНК-интерференции провели исследование генома человека на предмет обнаружения белков-«коллаборационистов», сотрудничающих с ВИЧ . В ходе работы ими были обнаружены 273 белка, так или иначе связанных с циклом ВИЧ . Но и это еще не всё. Оказалось, что наши внутренние, эндогенные ретровирусы, тихо сидящие в нашей ДНК, могут в случае надобности предоставлять «чужим» ретровирусам (в том числе и ВИЧ) свои ферменты, необходимые для вирусного жизненного цикла. То есть внутренние и внешние вирусы взаимодействуют между собой: американскими исследователями был зафиксирован феномен, когда в ответ на прием ингибиторов протеаз протеаза эндогенного ретровируса человека HERV-К компенсировала своим действием отсутствие этого фермента у ВИЧ-1 . Получается такая «дружеская взаимопомощь» между вирусами. Hе случайно авторитетный вирусолог, академик РАН Е.Д. Свердлов назвал наши эндогенные ретровирусы «пятой колонной» ВИЧ . В свою очередь, ВИЧ может активизировать «дремавшие» эндогенные ретровирусы: наблюдали усиление экспрессии генов ретровируса HERV-K10 у ВИЧ-инфицированных и появление в сыворотке крови таких людей вирусных частиц HERV-K [28, 29].
Рисунок 7. Изображение участка мембраны макрофага, способного к взаимодействию с ВИЧ. В дополнение к каноническим рецепторным структурам типа CD4 и CCR5/CXCR4 (имеющимся у Т-хелперов), мембрана макрофага имеет дополнительные молекулярные структуры, позволяющие вирусу эффективно узнавать макрофаг, присоединяться к его наружной поверхности и проникать внутрь клетки. Они играют важную роль в сигнальных клеточных актах, лежащих в основе жизненного цикла вируса. Взаимодействие гликопротеина gp120 ВИЧ с CCR5 приводит к сигнальной трансдукции, активирующей PI-3K (PI — ингибитор протеазы). PI-3K в свою очередь активирует серин/треонин-протеинкиназу (serine/threonine protein kinase, AKT). Далее запускается каскад реакций фосфорилирования, формирующих связи между транскрипционными актами. Аннексин (annexin II, Ann II) — это кальцийсвязывающий белок (Ca++-binding protein), он взаимодействует с фосфатидилсерином (phosphatidylserine) Env ВИЧ, участвует в актин-цитоскелетных перестановках (actin cytoskeletal rearrangement) и в транспорте вируса внутрь макрофага. Актин и аннексин II «вовлекают» вирус в эндосомальный компартмент, где он чувствует себя «как дома». В «узнавании» ВИЧ также участвуют маннозный рецептор макрофага (macrophage mannose receptors, MMR), gp340, CD63, галактозилцереброзид (galactosylcerebroside, GalCer) и синдекан (syndecan, Syn). Пунктирные стрелки относятся к путям, предполагаемым для Т-клеток. Pyk2 (proline-rich tyrosine kinase-2) — пролин-обогащенная тирозинкиназа-2; SAPK (stress-activated protein kinase) — стресс-активированная протеинкиназа. Рисунок из .
Существует одна схожая особенность многих опасных вирусов, затрудняющая вакцинацию и лечение: они чрезвычайно быстро меняются. У ВИЧ это обусловлено тем, что фермент обратная транскриптаза делает массу ошибок при копировании вируса в организме — такая у этого фермента особенность. И потому вирусные копии отличаются одна от другой, и вирус становится неуловимым. Это похоже на то, как если бы полиция искала преступника по фотороботу и отпечаткам, а он каждый день менял свой облик, да еще и делал себе двойников. У других вирусов есть свои механизмы изменчивости. К примеру, два знаменитых филовируса — Эбола и Марбурга — с момента открытия изменились по составу аминокислот в некоторых белках более чем на 20%! Вирус гриппа постоянно меняется благодаря двум своим специфическим особенностям: «антигенному дрейфу» и «антигенному шифту» — мутации антигенов вируса и полной замене одного из генов* .
* — Разным аспектам, связанным с вирусом гриппа, биомолекула посвятила целую серию статей, первая из которых — «Гонки с вирусом: эпидемиология и экология вируса гриппа» .
Эпидемии «медленных» вирусов и вирусная эволюция
Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек . Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека .
** — О строении и свойствах другого вируса, вируса гепатита А, читайте в статье «Вирус гепатита А: новое — это хорошо забытое старое» .
Конечно, атипичная пневмония, «птичий» грипп, коронавирус MERS и другие, неизвестные пока инфекции при определенных обстоятельствах могут вызвать эпидемии с большими человеческими жертвами. Природный резервуар «запасных» частей для вирусов огромен, и они могут складываться в опасные формы. Этот процесс носит название рекомбинация вирусов — вирусы обмениваются своими «запасными» частями (генами) друг с другом и с носителями, создавая новые виды. И именно после этого появляются новые опасные формы вирусов, о которых мы регулярно узнаем из новостных лент СМИ.
Причем больших изменений для возникновения опасной формы вируса не требуется. Так, «испанский» грипп, от которого в 1918-1920 гг. погибло более 20 млн человек, был вызван вирусом типа H1N1 (рис. 8), доставшимся человеку от птиц. В конце 90-х гг. американские ученые из Armed Forces Institute of Pathology исследовали этот вирус, выделив его из тел, похороненных на Аляске, и нашли всего лишь одно существенное изменение, сделавшее его смертельным: изменение в гене поверхностного белка — нейраминидазы . В 2008 году ученые из Массачусетского технологического института — Т. Тампи и его коллеги — дополнили эти исследования, обнаружив еще две возможные мутации, которые могли сделать этот вирус «массовым убийцей»: мутации в структуре второго поверхностного белка вируса гриппа — гемагглютинина, — которые позволили ему связываться со специфическими гликанами человеческих эпителиальных клеток (рецепторами α2—6)* .
Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.
Всё тот же научный прогресс стал причиной односторонней миграции населения из сёл и малых городов в крупные города, что привело к возникновению компактных многомиллионных поселений. Чего не было за всю длинную эволюцию человека. И такая скученность населения в крупных городах создает все условия для возникновения и распространения новых форм вирусов: ослабление иммунитета как следствие загрязненной среды обитания и стрессов и возможность скорейшего инфицирования всё новых и новых хозяев. Академик В.А. Кордюм (Институт молекулярной биологии и генетики, Киев) приводит пример с вирусом герпеса человека 7-го типа (ВГЧ-7) и цитомегаловирусом. Эти два инфекционных агента распространены повсеместно: ими инфицировано большинство населения Земли. И пока человек живет в нормальных условиях, они никак себя не проявляют. Но стоит лишь иммунитету ослабеть — вследствие стресса или других факторов — ВГЧ-7 и цитомегаловирус активизируются, еще более угнетая иммунную систему и «открывая ворота» для других, более опасных вирусов .
Ясно, что мы пока не до конца понимаем причины стремительной эволюции вирусов и те природные механизмы, которые способствуют этому. Очевидно, что наш современный «урбанистический» образ жизни играет в этих процессах не последнюю роль. Человек, устраивая свою жизнь с комфортом и переделывая всё вокруг на свой вкус и под свои нужды, вдруг забыл, что он обычный биологический вид и перестал жить по законам природы. А вирусы напоминают нам об этом.
Литература
• Нефедова Л.Н. и Ким А.И. . Эволюция от ретротранспозонов к ретровирусам: источник и происхождение гена env. Журнал общей биологии. , 459–467;
• Тарантул В.З. Имя ему СПИД. Четвертый всадник Апокалипсиса. М: Языки славянской культуры, 2005. — 400 c.;
• Reid S.P., Leung L.W., Hartman A.L., Martinez O., Shaw M.L., Carbonnelle C., Volchkov V.E., Nichol S.T., Basler C.F. . Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J. Virol. , 5156–5167;
• Robinson W.E. Jr., Montefiori D.C., Mitchell W.M., Prince A.M., Alter H.J., Dreesman G.R., Eichberg J.W. . Antibody-dependent enhancement of human immunodeficiency virus type 1 (HIV-1) infection in vitro by serum from HIV-1-infected and passively immunized chimpanzees. Proc. Natl. Acad. Sci. USA. , 4710–4714;
• Кордюм В.А. . Эволюция вирусов — попытка нелинейного прогноза. Биополимеры и клетка. , 467–486;
• Ржешевский А.В. . Золотой век вирусов. Популярная механика, ..
RSS лента
Войти через соцсети
Войти через соцсети
Зарегистрируйтесь через один клик