Показать оригинал
Показать перевод
Автоопределение
Углерод
Положение в периодической системе химических элементов
Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение углерода
Электронная конфигурация углерода в основном состоянии
Электронная конфигурация углерода в основном состоянии
Электронная конфигурация углерода в возбужденном состоянии
Электронная конфигурация углерода в возбужденном состоянии
Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.
Степени окисления атома углерода - от -4 до +4.
Характерные степени окисления -4, 0, +2, +4.
Физические свойства
Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.
Алмаз - это модификация углерода с атомной кристаллической решеткой. Алмаз - самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp³-гибридизации.
Алмаз
Алмаз
Кристаллы алмаза
Кристаллы алмаза
Графит - это аллотропная модификация, в которой атомы углерода находятся в состоянии sp² -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.
Графит - мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.
Графит
Графит
Карбин - вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин - мелкокристаллический порошок серого цвета.
[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n
Карбин
Карбин
Карбин
Карбин
Фуллерен - это искусственно полученная модифицикация углерода. Молекулы фуллерена - выпуклые многогранники С₆₀, С₇₀ и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.
Фуллерены - черные вещества с металлическим блеском, обладающие свойствами полупроводников.
Фуллерен
Фуллерен
В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества - нефть, природные газ, каменный уголь, карбонаты).
Качественные реакции
Качественная реакция на карбонат-ионы CO₃²⁻ - взаимодействие солей-карбонатов с сильными кислотами. Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ
Напримеркарбонат кальция растворяется в соляной кислоте:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Качественная реакция на углекислый газ CO₂ – помутнение известковой воды при пропускании через нее углекислого газа:
CO₂ + Ca(OH)₂ → CaCO₃ + H₂O
При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:
CaCO₃ + CO₂ + H₂O → Ca(HCO₃₂
Карбонат кальция с углекислым газом
Карбонат кальция с углекислым газом
Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.
Углекислый газ СО₂ не поддерживает горение. Угарный газ CO горит голубым пламенем.
Горение угарного газа
Горение угарного газа
Соединения углерода
Основные степени окисления углерода - +4, +2, 0, -1 и -4.
Наиболее типичные соединения углерода:
Химические свойства
При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода - невысокая.
1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:
C + 2F₂ → CF₄
2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:
C + 2S → CS₂
C + Si → SiC
3. Углерод не взаимодействует с фосфором
При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:
С + 2Н₂ → СН₄
4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:
2С + N₂ → N≡C–C≡N
5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:
4C + 3Al → Al₄C₃
2C + Ca → CaC₂
6. При нагревании с избытком воздуха графит горит, образуя оксид углерода (IV):
C + O₂ → CO₂
при недостатке кислорода образуется угарный газ СО:
2C + O₂ → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде
Горение алмаза в жидком кислороде
Графит также горит
Графит также горит
Графитовые стержни под напряжением:
Углерод взаимодействует со сложными веществами:
1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:
CO + H₂ + O → C + 2O + H₂O
2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов. При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией
Например, углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:
2ZnO + C → 2Zn + CO
Также углерод восстанавливает железо из железной окалины:
4С + Fe₃O₄ → 3Fe + 4CO
При взаимодействии с оксидами активных металлов углерод образует карбиды.
Например, углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:
3С + СаО → СаС₂ + СО
9С + 2Al₂O₃ → Al₄C₃ + 6CO
3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV)оксид углерода (IV) и вода:
C + 2H₂SO₄(конц) → CO₂ + 2SO₂ + 2H₂O
4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV)оксид углерода (IV) и вода:
C + 4HNO₃ (конц) → CO₂ + 4NO₂ + 2H₂O
5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями, в которых содержатся неметаллы с высокой степенью окисления.
Например, углерод восстанавливает сульфат натрия до сульфида натрия:
4C + Na₂SO₄ → Na₂S + 4CO
Карбиды
Карбиды – это соединения элементов с углеродом. Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.
Создать карусель Добавьте описание
Создать карусель Добавьте описание
Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями
Например, карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газаоксида кремния (IV) и оксида азота (II):
SiC + 8HNO₃ → 3SiO₂ + 3CO₂ + 8NO + 4H₂O
Оксид углерода (II)
Строение молекулы и физические свойства
Оксид углерода (II) ("угарный газ") – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.
Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:
Способы получения
В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:
НСООН → CO + H₂O
H₂C₂O₄ → CO + CO₂ + H₂O
В промышленностиуголь:
C + O₂ → CO₂
CO₂ + C → 2CO
Еще один важный промышленный способ получения угарного газа - паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:
СН₄ + Н₂O → СО + 3Н₂
Также возможна паровая конверсия угля:
CO + H₂ + O → C + 2O + H₂O
Угарный газ в промышленности также можно получать неполным окислением метана:
2СН₄ + О₂ → 2СО + 4Н₂
Химические свойства
• Угарный газ горит в атмосфере кислорода. Пламя окрашено в синий цвет:
2СO + O₂ → 2CO₂
Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.
CO + Cl₂ → COCl₂
Угарный газ взаимодействует с водородом при повышенном давлении. Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанолметан, или другие углеводороды
Например, под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:
СО + 2Н₂ → СН₃ОН
Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.
Например, угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:
CO + NaOH → HCOONa
Оксид углерода (II) восстанавливает металлы из оксидов
Например, оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:
3CO + Fe₂O₃ → 2Fe + 3CO₂
Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:
СО + CuO → Cu + CO₂
СО + NiO → Ni + CO₂
Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.
Например, пероксидом натрия:
CO + Na₂O₂ → Na₂CO₃
Оксид углерода (IV)
Строение молекулы и физические свойства
Оксид углерода (IV) (углекислый газ) - газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также "сухой лед". Сухой лед легко подвергается сублимации - переходит из твердого состояния в газообразное.
Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:
Углекислый газ не горит, поэтому его применяют при пожаротушении.
Молекула углекислого газа линейная, атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:
Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):
Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода - это покупатель в магазине. А атомы кислорода - это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.
Способы получения
В лаборатории углекислый газ можно получить разными способами:
Например, карбонат кальция растворяется в соляной кислоте:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Еще один пример: гидрокарбонат натрия реагирует с бромоводородной кислотой:
NaHCO₃ + HBr → NaBr + H₂O + CO₂
Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:
2AlCl₃ + 3K₂CO₃ + 3H₂O → 2Al(OH)₃↓ + CO₂↑ + 6KCl
Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.
Например, карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:
CaCO₃ → CaO + CO₂
Химические свойства
Углекислый газ - типичный кислотный оксид. За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства
CO₂ + H₂O ↔ H₂CO₃
Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями. При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами. При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.
Например, гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:
KOH + CO₂ → KHCO₃
При избытке щелочи образуется средняя солькарбонат калия:
2KOH + CO₂ → K₂CO₃ + H₂O
Помутнение известковой воды - качественная реакция на углекислый газ:
Ca(OH)₂ + CO₂ → CaCO₃ + H₂O
Углекислый газ взаимодействует с карбонатами. При пропускании СО₂ через раствор карбонатов образуются гидрокарбонаты.
Например, карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:
Na₂CO₃ + CO + H₂O → 2NaHCO₃
Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями
Например, углекислый газ взаимодействует с углеродом с образованием угарного газа:
CO₂ + C → 2CO
Магний горит в атмосфере углекислого газа:
2Мg + CO₂ → C + 2MgO
Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.
Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:
2CO₂ + 2Na₂O₂ → 2Na₂CO₃ + O₂
Карбонаты и гидрокарбонаты
При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).
CaCO₃ → CaO + CO₂
Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:
(NH₄₂CO₃ → 2NH₃ + 2H₂O + CO₂
Гидрокарбонаты при нагревании переходят в карбонаты:
2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O
Качественной реакцией на ионы СО₃²⁻ и НСО³⁻ является их взаимодействие с более сильными кислотами, последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО₂.
Например, карбонат натрия взаимодействует с соляной кислотой:
Na₂CO₃ + 2HCl → 2NaCl + CO₂↑ + H₂O
Гидрокарбонат натрия также взаимодействует с соляной кислотой:
NaHCO₃ + HCl → NaCl + CO₂↑ + H₂O
Гидролиз карбонатов и гидрокарбонатов
Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
I ступень: CO₃²⁻ + H₂O = HCO₃⁻ + OH⁻
II ступень: HCO₃⁻ + H₂O = H₂CO₃ + OH⁻
Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимополностью, т.е. в водном растворе не существуют, а разлагаются водой:
Al₂(SO₄₃ + 6NaHCO₃ → 2Al(OH)₃ + 6CO₂ + 3Na₂SO₄
2AlBr₃ + 3Na₂CO₃ + 3H₂O → 2Al(OH)₃↓ + CO₂↑ + 6NaBr
Al₂(SO₄₃ + 3K₂CO₃ + 3H₂O → 2Al(OH)₃↓ + 3CO₂↑ + 3K₂SO₄