Всё про иммунитет


Механизм иммунного ответа и иммунные клетки. Основные понятия.

Иммунитет: борьба с чужими и… своими

• Иммунитет

• Антигены

• Цитокины

• Иммунные клетки

• Рис. 1. Схема дифференцировки клеток иммунной системы.Врожденный иммунитет

• Врожденный иммунитет

• Некоторые клетки врожденного иммунитета

• Видео 1. Нейтрофилы приходят в очаг повреждения ткани

• Адаптивный иммунитет

• Видео 2. Кратковременные взаимодействия Т-клеток с дендритной клеткой

• Т-лимфоциты

• Видео 3. Движение Т-хелперов и Т-киллеровв лимфоузле

• Видео 4. Перемещение Т-клеток по лимфоузлу

• В-лимфоциты

• Схема иммунного ответа

• Рисунок 2. Схема иммунного ответа

• Рисунок 3. Основные типы патогенов и клетки, принимающие участие в их уничтожении

• Видео 5. Механизм иммунного ответа

• Аутоиммунитет

• Заключение

• Гемопоэтическая стволовая клетка (дополнение к подразделу о цитокинах)

• Литература

Иммунитет - система реакций, призванная защитить организм от вторжения бактерий, вирусов, грибов, простейших и других вредоносных агентов — так называемых патогенов. Если представить, что наше тело — это страна, то иммунную систему можно сравнить с ее вооруженными силами. Чем более слаженным и адекватным будет их ответ на интервенцию патогенов, тем надежнее окажется защита организма.

"Азбука Морзе" организма

Упомянутая выше условность классификации означает, что цитокин, входящий в одну из перечисленных групп, при определенных условиях в организме может сыграть диаметрально противоположную роль — например, из провоспалительного превратиться в противовоспалительный.

Без налаженной связи между видами войск любая хитроумная военная операция обречена на провал, поэтому клеткам иммунной системы очень важно, принимая и отдавая приказы в виде цитокинов, правильно их интерпретировать и слаженно действовать. Если цитокиновые сигналы начинают вырабатываться в очень большом количестве, то в клеточных рядах наступает паника, что может привести к повреждению собственного организма. Это называется цитокиновым штормом: в ответ на поступающие цитокиновые сигналы клетки иммунной системы начинают продуцировать всё больше и больше собственных цитокинов, которые, в свою очередь, действуют на клетки и усиливают секрецию самих себя. Формируется замкнутый круг, который приводит к разрушению окружающих клеток, а позже и соседних тканей.

Иммунные клетки

По порядку расчитайсь!

Все клетки, относящиеся к иммунной системе и привлекаемые ею для обеспечения эффекторных реакций, в функциональном отношении условно разделяют на четыре группы.

• Антигенпрезентирующие клетки: макрофаги, дендритные клетки типов 1 и 2, В-лимфоциты.

• Регуляторные клетки: T-индукторы, Т-хелперы типов 1, 2 и 3, естественные регуляторные Т-клетки.

• Эффекторные клетки: плазматические клетки (дифференцирующиеся из В-лимфоцитов), цитотоксические Т-клетки с фенотипом CD8+ (или T-киллеры); эффекторные Т-клетки воспаления с фенотипом CD4+ (или Т-лимфоциты, ответственные за гиперчувствительность замедленного типа); нейтрофилы, эозинофилы, базофилы, тучные клетки, натуральные киллеры (NK-клетки), макрофаги.

• Клетки памяти: Т-клетки памяти с фенотипом CD8+; Т-клетки памяти с фенотипом CD4+; долгоживующие плазматические клетки; В-клетки памяти.


Рис. 1. Схема дифференцировки клеток иммунной системы.

Кроветворная стволовая клетка дает начало клеткам - предшественницам миелоидной и лимфоидной линий дифференцировки, из которых дальше образуются все типы клеток крови.


Врожденный иммунитет

"Регулярная армия"

Клетки врожденного иммунитета распознают патоген по специфичным для него молекулярным маркерам — так называемым образам патогенности . Эти маркеры не позволяют точно определить принадлежность патогена к тому или иному виду, а лишь сигнализируют о том, что иммунитет столкнулся с чужаками. Для нашего организма подобными маркерами могут служить фрагменты клеточной стенки и жгутиков бактерий, двухцепочечная РНК и одноцепочечная ДНК вирусов, и т.д. При помощи специальных рецепторов врожденного иммунитета, таких как TLR (Toll-like receptors, Толл-подобные рецепторы) и NLR (Nod-like receptors, Nod-подобные рецепторы), клетки взаимодействуют с образами патогенности и приступают к реализации своей защитной стратегии.

Нейтрофилы — самые многочисленные иммунные клетки в крови человека - бόльшую часть своей жизни путешествуют по организму. При встрече с патогеном они поглощают и переваривают его, но после «сытного обеда» обычно погибают. Нейтрофилы - клетки-камикадзе, и смерть - основной механизм их действия. В момент гибели нейтрофилов высвобождается содержимое находящихся в них гранул - вещества, обладающие антибиотическим действием, - а кроме того, разбрасывается сеть из собственной ДНК клетки (NETs, neutrophil extracellular tracts), в которую попадают находящиеся поблизости бактерии - теперь они становятся еще более заметными для макрофагов.


Удивительно, но на разных стадиях своего развития некоторые клетки иммунной системы могут выполнять функции, противоположные друг другу. Так, выделяют гетерогенную группу предшественников различных иммунных клеток врожденного иммунитета, которые в таком незрелом виде подавляют иммунный ответ. Их так и назвали: миелоидные супрессорные клетки. Их количество увеличивается в организме в ответ на появление хронической инфекции или рака. Роль таких клеток очень важна, ведь они не позволяют другим бойцам армии иммунитета слишком сильно бороться с врагом, повреждая тем самым мирное население - ни в чем не повинные клетки, находящиеся поблизости.

"спецподразделения вооруженных сил организма"

Клетки адаптивного иммунитета — Т- и В-лимфоциты — можно сравнить с отрядами специального назначения. Дело в том, что они способны распознавать множество индивидуальных антигенов патогенов благодаря специализированным рецепторам на своей поверхности. Эти рецепторы называются Т-клеточным (TCR, T-cell receptor) и В-клеточным (BCR, B-cell receptor) соответственно. Благодаря хитроумному процессу образования TCR и BCR, каждый В- или Т-лимфоцит несет свой собственный уникальный рецептор к конкретному, уникальному антигену.


Видео 3. Движение Т-хелперов (красные) и Т-киллеров (зеленые) в лимфоузле. Видео снято при помощи прижизненной двухфотонной микроскопии.


Видео 4. Перемещение Т-клеток (обозначены красным) по лимфоузлу. Клетки, образующие структурную основу лимфоузла и стенки сосудов, помечены зеленым флуоресцентным белком. Видео снято при помощи прижизненной двухфотонной микроскопии.


Существует также периферическая иммунологическая толерантность. При развитии инфекции на дендритную клетку, как и на любую клетку врожденного иммунитета, действуют образы патогенности. Только после этого она может созреть, начать экспрессировать на своей поверхности дополнительные молекулы для активации лимфоцита и эффективно представлять антигены Т-лимфоцитам. Если же Т-лимфоцит встречается с незрелой дендритной клеткой, то он не активируется, а самоуничтожается или же супрессируется. Это неактивное состояние Т-клетки называется анергией. Таким способом в организме предотвращается патогенное действие аутореактивных Т-лимфоцитов, которые по тем или иным причинам выжили в ходе селекции в тимусе (О жизненном цикле Т-клеток можно прочитать в статье «Т-лимфоциты: путешественники и домоседы»).

Всё вышесказанное относится к αβ-Т-лимфоцитам, однако существует еще один тип Т-клеток — γδ-T-лимфоциты (название определяет состав белковых молекул, образующих TCR) . Они относительно малочисленны и в основном заселяют слизистую оболочку кишечника и другие барьерные ткани, играя важнейшую роль в регуляции состава обитающих там микробов. У γδ-T-клеток механизм распознавания антигенов отличается от αβ-Т-лимфоцитарного и не зависит от TCR .

B-лимфоциты

В-лимфоциты несут на своей поверхности В-клеточный рецептор . При контакте с антигеном эти клетки активируются и превращаются в особый клеточный подтип — плазматические клетки, обладающие уникальной способностью секретировать свой B-клеточный рецептор в окружающую среду — именно эти молекулы мы называем антителами. Таким образом, как BCR, так и антитело имеет сродство к распознаваемому им антигену, как бы «прилипает» к нему. Это дает возможность антителам обволакивать (опсонизировать) клетки и вирусные частицы, покрытые молекулами антигена, привлекая макрофаги и другие иммунные клетки для уничтожения патогена. Антитела также умеют активировать специальный каскад иммунологических реакций, называемый системой комплемента, который приводит к перфорации клеточной мембраны патогена и его гибели.

Для эффективной встречи клеток адаптивного иммунитета с дендритными клетками, несущими в составе MHC чужеродные антигены и поэтому работающими «связными», в организме существуют специальные иммунные органы — лимфоузлы. Распределение их по организму неоднородно и зависит от того, насколько уязвимой является та или иная граница. Бόльшая их часть находится вблизи пищеварительного и дыхательного трактов, ведь проникновение патогена с пищей или вдыхаемым воздухом — наиболее вероятный способ заражения.

Развитие адаптивного иммунного ответа требует достаточно много времени (от нескольких дней до двух недель), и для того чтобы организм мог защищаться от уже знакомой инфекции быстрее, из Т- и В-клеток, участвовавших в прошлых битвах, формируются так называемые клетки памяти. Они, подобно ветеранам, в небольшом количестве присутствуют в организме, и если появляется знакомый им патоген, вновь активируются, быстро делятся и целой армией выходят на защиту границ.

Рисунок 2. Схема иммунного ответа.

Рисунок 3. Основные типы патогенов и клетки, принимающие участие в их уничтожении.

А теперь все вышеописанные иммунные перипетии — в коротком видео.

громыхает "гражданская война"...

Селекция Т-лимфоцитов в тимусе, а также удаление аутореактивных клеток на периферии (центральная и периферическая иммунологическая толерантность), о которых мы говорили ранее, не могут полностью избавить организм от аутореактивных Т-лимфоцитов. Что же касается В-лимфоцитов, вопрос о том, насколько строго осуществляется их селекция, до сих пор остается открытым. Поэтому в организме каждого человека обязательно присутствует множество аутореактивных лимфоцитов, которые в случае развития аутоиммунной реакции могут повреждать собственные органы и ткани в соответствии со своей специфичностью.

За аутоиммунные поражения организма могут быть ответственны как Т-, так и В-клетки. Первые осуществляют непосредственное убийство безвинных клеток, несущих на себе соответствующий антиген, а также помогают аутореактивным В-клеткам в продукции антител. Т-клеточный аутоиммунитет хорошо изучен при ревматоидном артрите, сахарном диабете первого типа, рассеянном склерозе и многих других болезнях.

Как правило, аутоиммунное заболевание возникает внезапно, и невозможно точно определить, что стало его причиной. Считается, что триггером для запуска может послужить практически любая стрессовая ситуация, будь то перенесенная инфекция, травма или переохлаждение. Значительный вклад в вероятность возникновения аутоиммунного заболевания вносит как образ жизни человека, так и генетическая предрасположенность — наличие определенного варианта какого-либо гена.

Предрасположенность к тому или иному аутоиммунному заболеванию часто ассоциирована с определенными аллелями генов MHC, о которых мы уже много говорили. Так, наличие аллеля HLA-B27 может служить маркером предрасположенности к развитию болезни Бехтерева, ювенильного ревматоидного артрита, псориатического артрита и других заболеваний. Интересно, что присутствие в геноме того же самого HLA-B27 коррелирует с эффективной защитой от вирусов: например, носители этого аллеля имеют пониженные шансы заразиться ВИЧ или гепатитом С. Это еще одно напоминание о том, что чем агрессивнее воюет армия, тем вероятнее потери среди гражданского населения.

Кроме того, на развитие болезни может влиять уровень экспрессии аутоантигена в тимусе. Например, продукция инсулина и, соответственно, частота презентации его антигенов Т-клеткам различается от человека к человеку. Чем она выше, тем ниже риск развития сахарного диабета первого типа, так как это позволяет удалить специфичные к инсулину Т-лимфоциты.

Все аутоиммунные заболевания можно разделить на органоспецифические и системные. При органоспецифических болезнях поражаются отдельные органы или ткани. Например, при рассеянном склерозе — миелиновая оболочка нейронов, при ревматоидном артрите - суставы, а при сахарном диабете первого типа — островки Лангерганса в поджелудочной железе. Системные аутоиммунные заболевания характеризуются поражением многих органов и тканей. К таким болезням относятся, например, системная красная волчанка и первичный синдром Шегрена, поражающие соединительную ткань. Более подробно об этих заболеваниях будет рассказано в других статьях спецпроекта.

Как мы уже убедились, иммунитет — это сложнейшая сеть взаимодействий как на клеточном, так и на молекулярном уровнях. Создать идеальную систему, надежно защищающую организм от атак патогенов и одновременно ни при каких условиях не повреждающую собственные органы, не смогла даже природа. Аутоиммунные заболевания — побочный эффект высокой специфичности работы системы адаптивного иммунитета, те издержки, которыми нам приходится платить за возможность успешно существовать в мире, кишащем бактериями, вирусами и другими патогенами.

Медицина - творение рук человека - не может в полной мере исправить то, что было создано природой, поэтому на сегодняшний день ни одно из аутоиммунных заболеваний полностью не излечивается. Поэтому цели, которых стремится достичь современная медицина, - это своевременная диагностика заболевания и эффективное купирование его симптомов, от которого напрямую зависит качество жизни пациентов. Однако для того чтобы это было возможно, необходимо повысить информированность населения об аутоиммунных заболеваниях и способах их лечения. «Предупрежден - значит вооружен!» - вот девиз общественных организаций, созданных для этого по всему миру.


к подразделу о цитокинах - факторах роста

Гемопоэтическая стволовая клетка

Кем быть? Как гемопоэтическая стволовая клетка "выбирает профессию"

Общие лимфоидные предшественники дают начало клеткам иммунной системы — NK-клеткам, T- и B-лимфоцитам, — которые защищают организм от вторжения. NK-клетки (большие гранулярные лимфоциты) убивают чужаков, T-лимфоциты могут распознавать эпитоп (участок антигена) врага и организовывать наступление (T-хелперы) или атаковать самостоятельно (цитотоксические лимфоциты), а B-лимфоциты, тоже после знакомства с антигеном, могут превращаться в плазматические клетки, вырабатывать специфические антитела и поражать ими врага на расстоянии.

Каким же образом гемопоэтическая стволовая клетка решает, оставаться ей вечно юной или встать на путь дифференцировки и превратиться в зрелую клетку крови? И как она выбирает свою будущую профессию? Результаты большого количества исследований доказывают, что важную роль играет окружение гемопоэтической стволовой клетки*. В первую очередь, это различные виды клеток, формирующие гемопоэтическую нишу костного мозга.

Кроме того, другие клетки костного мозга также могут влиять на судьбу гемопоэтической стволовой клетки. Например, было показано, что адипоциты препятствуют гемопоэзу, а немиелинизирующие шванновские клетки, расположенные рядом с симпатическими нервными волокнами, поддерживают ГСК в состоянии покоя .

Кроме непосредственного влияния окружающих клеток, на ГСК воздействует множество растворимых веществ — цитокинов и ростовых факторов. Часть из них вырабатывается клетками ниши, другие синтезируются далеко от костного мозга (например, эритропоэтин — в почках, а паратиреоидный гормон — паращитовидной железой). Некоторые вещества продляют детство ГСК (например, CXCL-12 — хемокин подсемейства CXC), способствуя ее самообновлению . А некоторые заставляют задуматься о взрослении и будущей профессии. Например, интерлейкин-7, как военная игрушка, способствует появлению у юных клеток мыслей о службе, а гранулоцитарный колониестимулирующий фактор развивает тягу к знаниям. Также в регуляции кроветворения участвует симпатическая нервная система, передавая сигналы о ситуации в организме .

Однако выбор профессии — непростой процесс. И огромную роль в нём, помимо внешнего воздействия, играют личные предпочтения и склонности. Как и у человека, у гемопоэтической стволовой клетки богатый и сложный внутренний мир, который представлен транскрипционными факторами. Именно их взаимодействия приводят в конечном итоге к принятию решения, кем же ей быть [17, 18].

Например, экспрессия гена транскрипционного фактора GATA1 способствует выбору эритроцитарного и мегакариоцитарного направления дифференцировки, в то время как высокий уровень PU.1 связан с дифференцировкой по моноцитарному пути и подавляет желание клетки стать эритроцитом или мегакариоцитом. Эти два транскрипционных фактора взаимосвязаны таким образом, что повышение продукции одного из них снижает экспрессию гена другого. Уровень экспрессии гена PU.1 (SPI1) также регулируется транскрипционным фактором Ikaros, который стимулирует синтез транскрипционного репрессора Gfi1. Вместе они подавляют экспрессию SPI1. Увеличение концентрации PU.1 активирует транскрипционные факторы Egr, запускающие программу дифференцировки в моноциты. Egr также активируют гены белков семейства Id (ингибиторов ДНК-связывающих белков), что приводит к снижению продукции E2A — важнейшего транскрипционного фактора в развитии B-лимфоцитов. Кроме того, пониженный уровень PU.1 блокирует дифференцировку клетки в B-лимфоцит другим путем — через снижение экспрессии генов факторов EBF [17, 18].

Конечно, представление работы транскрипционных факторов в виде механических блоков — чрезвычайное упрощение. Кроме того, описанные взаимодействия — лишь малая часть огромной сети транскрипционных факторов. В настоящее время ведутся масштабные исследования, чтобы составить представление о внутренних факторах, участвующих в регуляции дифференцировки гемопоэтической стволовой клетки, и об их взаимосвязи с внешними факторами, такими как влияние других клеток и растворимых факторов. Все эти знания помогут лучше понять процессы, лежащие в основе кроветворения в норме и при различных заболеваниях, разработать подходы к лечению этих заболеваний, а также научиться управлять судьбой гемопоэтических стволовых клеток in vitro и in vivo.


(рекомендовано к прочтению)

К разделу:

Дополнительно см.:

Литература:

Будьте здоровы!



Информация получена с сайтов:
,